首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212578篇
  免费   32297篇
  国内免费   19622篇
电工技术   28583篇
技术理论   9篇
综合类   21636篇
化学工业   18219篇
金属工艺   5332篇
机械仪表   11812篇
建筑科学   9326篇
矿业工程   4849篇
能源动力   4482篇
轻工业   9347篇
水利工程   3926篇
石油天然气   4193篇
武器工业   2322篇
无线电   37497篇
一般工业技术   14150篇
冶金工业   4750篇
原子能技术   1075篇
自动化技术   82989篇
  2024年   800篇
  2023年   4085篇
  2022年   7910篇
  2021年   10439篇
  2020年   8600篇
  2019年   7026篇
  2018年   6639篇
  2017年   8199篇
  2016年   9784篇
  2015年   11305篇
  2014年   15368篇
  2013年   14346篇
  2012年   16080篇
  2011年   15990篇
  2010年   12823篇
  2009年   13301篇
  2008年   13685篇
  2007年   15943篇
  2006年   13793篇
  2005年   11875篇
  2004年   9183篇
  2003年   8082篇
  2002年   6189篇
  2001年   4886篇
  2000年   4078篇
  1999年   3081篇
  1998年   2226篇
  1997年   1805篇
  1996年   1444篇
  1995年   1140篇
  1994年   916篇
  1993年   631篇
  1992年   488篇
  1991年   349篇
  1990年   345篇
  1989年   279篇
  1988年   185篇
  1987年   116篇
  1986年   112篇
  1985年   123篇
  1984年   109篇
  1983年   84篇
  1982年   88篇
  1981年   54篇
  1980年   69篇
  1979年   33篇
  1966年   25篇
  1964年   36篇
  1962年   65篇
  1959年   35篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
81.
刮板输送机中板磨损失效已成为输送机运行故障的主要原因之一,为了提高中板耐磨性,基于蜣螂非光滑单元进行了仿生中板设计,以磨损量为响应值,进行了单因素和响应面法优化试验。根据响应面法试验结果得到的因素显著性影响顺序(从高至低)依次为:径向距离,深径比,直径,节距角。基于试验结果建立了磨损量与因素的回归预测模型,经试验对比发现,预测模型与真实试验的相对误差为3.2%。在特定工况(煤散料粒度为6~8 mm、载荷为20 N、刮板链速为0.65 m/s及试验时长为6 600 s)下,当深径比为1.41、直径为0.69 mm、节距角为6.55°和径向距离为4.66 mm时,磨损量最小,仿生中板的耐磨性提高了12.6%。分析其耐磨机理发现,与光滑板相比,仿生板的磨粒磨损及黏着磨损较轻。凹坑分布可破坏持续切削中板表面的煤粒运动状态。中板的仿生优化可为今后刮板输送机的设计提供一定参考。  相似文献   
82.
Although greedy algorithms possess high efficiency, they often receive suboptimal solutions of the ensemble pruning problem, since their exploration areas are limited in large extent. And another marked defect of almost all the currently existing ensemble pruning algorithms, including greedy ones, consists in: they simply abandon all of the classifiers which fail in the competition of ensemble selection, causing a considerable waste of useful resources and information. Inspired by these observations, an interesting greedy Reverse Reduce-Error (RRE) pruning algorithm incorporated with the operation of subtraction is proposed in this work. The RRE algorithm makes the best of the defeated candidate networks in a way that, the Worst Single Model (WSM) is chosen, and then, its votes are subtracted from the votes made by those selected components within the pruned ensemble. The reason is because, for most cases, the WSM might make mistakes in its estimation for the test samples. And, different from the classical RE, the near-optimal solution is produced based on the pruned error of all the available sequential subensembles. Besides, the backfitting step of RE algorithm is replaced with the selection step of a WSM in RRE. Moreover, the problem of ties might be solved more naturally with RRE. Finally, soft voting approach is employed in the testing to RRE algorithm. The performances of RE and RRE algorithms, and two baseline methods, i.e., the method which selects the Best Single Model (BSM) in the initial ensemble, and the method which retains all member networks of the initial ensemble (ALL), are evaluated on seven benchmark classification tasks under different initial ensemble setups. The results of the empirical investigation show the superiority of RRE over the other three ensemble pruning algorithms.  相似文献   
83.
We propose all printed and highly stable organic resistive switching device (ORSD) based on graphene quantum dots (G-QDs) and polyvinylpyrrolidone (PVP) composite for non-volatile memory applications. It is fabricated by sandwiching G-QDs/PVP composite between top and bottom silver (Ag) electrodes on a flexible substrate polyethylene terephthalate (PET) at ambient conditions through a cost effective and eco-friendly electro-hydrodynamic (EHD) technique. Thickness of the active layer is measured around 97 nm. The proposed ORSD is fabricated in a 3 × 3 crossbar array. It operates switching between high resistance state (HRS) and low resistance state (LRS) with OFF/ON ratio ∼14 for more than 500 endurance cycles, and retention time for more than 30 days. The switching voltage for set/reset of the devices is ±1.8 V and the bendability down to 8 mm diameter for 1000 cycles are tested. The elemental composition and surface morphology are characterized by XPS, FE-SEM, and microscope.  相似文献   
84.
Distribution systems are most commonly operated in a radial configuration for a number of reasons. In order to impose radiality constraint in the optimal network reconfiguration problem, an efficient algorithm is introduced in this paper based on graph theory. The paper shows that the normally followed methods of imposing radiality constraint within a mixed-integer programming formulation of the reconfiguration problem may not be sufficient. The minimum-loss network reconfiguration problem is formulated using different ways to impose radiality constraint. It is shown, through simulations, that the formulated problem using the proposed method for representing radiality constraint can be solved more efficiently, as opposed to the previously proposed formulations. This results in up to 30% reduction in CPU time for the test systems used in this study.  相似文献   
85.
Chitosan (CHT) is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L.) cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO). We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS) appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation.  相似文献   
86.
This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury.  相似文献   
87.
Increasing use of iron oxide nanoparticles in medicine and environmental remediation has led to concerns regarding exposure of these nanoparticles to the public. However, limited studies are available to evaluate their effects on the environment, in particular on plants and food crops. Here, we investigated the effects of positive (PC) and negative (NC) charged iron oxide (Fe2O3) nanoparticles (IONPs) on the physiology and reproductive capacity of Arabidopsis thaliana at concentrations of 3 and 25 mg/L. The 3 mg/L treated plants did not show evident effects on seeding and root length. However, the 25 mg/L treatment resulted in reduced seedling (positive-20% and negative-3.6%) and root (positive-48% and negative-negligible) length. Interestingly, treatment with polyethylenimine (PEI; IONP-PC coating) also resulted in reduced root length (39%) but no change was observed with polyacrylic acid (PAA; IONP-NC coating) treatment alone. However, treatment with IONPs at 3 mg/L did lead to an almost 5% increase in aborted pollen, a 2%–6% reduction in pollen viability and up to an 11% reduction in seed yield depending on the number of treatments. Interestingly, the treated plants did not show any observable phenotypic changes in overall size or general plant structure, indicating that environmental nanoparticle contamination could go dangerously unnoticed.  相似文献   
88.
The effect of SO2 gas was investigated on the activity of the photo-assisted selective catalytic reduction of nitrogen monoxide (NO) with ammonia (NH3) over a TiO2 photocatalyst in the presence of excess oxygen (photo-SCR). The introduction of SO2 (300 ppm) greatly decreased the activity of the photo-SCR at 373 K. The increment of the reaction temperature enhanced the resistance to SO2 gas, and at 553 K the conversion of NO was stable for at least 300 min of the reaction. X-ray diffraction, FTIR spectroscopy, thermogravimetry and differential thermal analysis, x-ray photoelectron spectroscopy (XPS), elemental analysis and N2 adsorption measurement revealed that the ammonium sulfate species were generated after the reaction. There was a strong negative correlation between the deposition amount of the ammonium sulfate species and the specific surface area. Based on the above relationship, we concluded that the deposition of the ammonium sulfate species decreased the specific surface area by plugging the pore structure of the catalyst, and the decrease of the specific surface area resulted in the deactivation of the catalyst.  相似文献   
89.
An integrated approach to measure the cost efficiency of the postal network of Universal Service Provider is proposed. An integrated approach enables the measurement of cost efficiency for delivery and non-delivery postal network units. The proposed approach is verified and tested on the postal network of the selected provider and the results were derived by using Data Envelopment Analysis (DEA). The results show that the main sources of inefficiency are inadequate allocation of resources relative to the network units. In addition, the study indicates that economies of scale have a positive impact on the efficiency of postal network units.  相似文献   
90.
Abstract

The expected longer service life of modified asphalt can be jeopardized by different environmental factors, such as moisture, oxidation, etc. which affect the desired properties by altering the adhesive property. An insight into knowledge of the adhesive property of the asphalt can help in providing more durable asphalt pavement. The study attempted to develop different models of adhesive properties of polymers and carbon nanotubes (CNTs) modified asphalt binders. The polymer-CNT modified asphalt is processed to prepare different types of samples, by simulating the damage due to moisture and oxidization, following the corresponding standard method. An Atomic Force Microscopy (AFM) was employed to assess the nanoscale adhesion force of the tested samples following the existing functional group in asphalt. Finally, the study has developed Radial Basis Function Neural Network (RBFNN) as a function of different parameters including; asphalt chemistry (i.e. AFM tip type and constant), type and percentages of polymers and CNTs and different environmental exposures (oxidation, moisture, etc.) to predict the nano adhesion force of asphalt. It is observed that the adhesive property of the Styrene–Butadiene modified asphalt is more consistent compared to the Styrene–Butadiene–Styrene modified asphalt, while the presence of Single-Wall Nanotubes (SWNT) is observed to affect the adhesive properties of asphalt significantly as compared to Multi-Wall Nanotubes (MWNT). The higher accuracy level of RBFNN model also indicates that the functional group (tip-type) adding with the percentages and types of polymers and CNTs significantly affect the adhesive properties of asphalt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号